Sodium-Coupled Energy Transduction in the Newly Isolated Thermoalkaliphilic Strain LBS3
Prowe, Steffen G.; Vossenberg, Jack L.C.M. van de; Driessen, Arnold J.M.; Antranikian, Garabed; Konings, Wil N.

Published in:
Journal of Bacteriology

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1996

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Sodium-Coupled Energy Transduction in the Newly Isolated Thermoalkalophilic Strain LBS3

STEFFEN G. PROWE,1 JACK L. C. M. VAN DE VOSSENBERG,2 ARNOLD J. M. DRIESSEN,2 GARABED ANTRANIKIAN,1 AND WIL N. KONINGS3*

Technical Microbiology, Biotechnology I, Technical University Hamburg-Harburg, D-21071 Hamburg, Germany,1 and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands

Received 11 January 1996/Accepted 3 May 1996

Strain LBS3 is a novel anaerobic thermoalkalophilic bacterium that grows optimally at pH 9.5 and 50°C. Since a high concentration of Na⁺ ions is required for growth, we have analyzed the primary bioenergetic mechanism of energy transduction in this organism. For this purpose, a method was devised for the isolation of right-side-out membrane vesicles that are functional for the energy-dependent uptake of solutes. A strict requirement for Na⁺ was observed for the uptake of several amino acids, and in the case of l-leucine, it was concluded that amino acid uptake occurs in sympy with Na⁺ ions. Further characterization of the leucine transport system revealed that its pH and temperature optima closely match the conditions that support the growth of strain LBS3. The ATPase activity associated with inside-out membrane vesicles was found to be stimulated by both Na⁺ and Li⁺ ions. These data suggest that the primary mechanism of energy transduction in the anaerobic thermoalkalophilic strain LBS3 is dependent on sodium cycling. The implications of this finding for the mechanism of intracellular pH regulation are discussed.

The newly isolated strain LBS3 is a gram-positive, spore-forming, anaerobic thermoalkalophilic bacterium that grows optimally at 50°C and an alkaline pH of 9.5. The strain was isolated from a hot-lake inlet at Lake Bogoria in Kenya and represents a new group within the gram-positive Clostridium-Bacillus subphylum (24). Only a few thermoalkaliphilic strains are known to date, like the anaerobes Clostridium paradoxum (19) and Clostridium thermoalkalophilum (18), the hyperthermophile Thermococcus alcaliphilus (11), and a few moderately thermophilic alkali-philic methanogens (2).

Strain LBS3 is an anaerobe, a thermophile, and an alkaliphile. Its physiological characteristics therefore must fit this complex habitat. As an anaerobic bacterium, it is faced with the problem that metabolic energy is mainly obtained by substrate level phosphorylation (13). The electrochemical ion gradient across the cytoplasmic membrane is usually generated by a cytoplasmic-membrane-bound H⁺- or Na⁺-ATPase (5), although other mechanisms have been reported recently (see reference 12). Most anaerobes studied to date use H⁺ as a coupling ion in energy-transducing processes. In recent years, a number of anaerobes have been found to also use Na⁺ as a coupling ion (1, 4), and one anaerobic thermophile, Clostridium fervidus, has actually been found to rely completely on Na⁺ in energy transduction (26).

Acidic alkali-philic bacteria rely mainly on primary, respiration-dependent H⁺ pumping for the generation of an electrochemical gradient of protons (Δψ). To counteract the H⁺ expulsion and to maintain an intracellular pH of around 8.2, these bacteria possess Na⁺/H⁺ antiporters (9, 23). K⁺/H⁺ antiporters have also been implicated in the regulation of the intracellular pH (29) in such organisms as the moderately halophilic and alkalophilic methanogen Methanobacterium taylorii GS-16 (22). In this respect, K⁺ ions play a role in pH homeostasis in Bacillus alcaliphilus (14) and in the ureolytic bacterium Bacillus pasteurii (10). In the latter case, K⁺ ions can be replaced by ammonium ions under conditions (10). The low magnitude of the Δψ in alkali-philic bacteria has led to the suggestion that these bacteria may use the electrochemical gradient of sodium ions (ΔψNa⁺) for the generation of ATP. However, to date, the activity of the membrane-bound ATPase in all aerobic alkali-philic cells appears to be exclusively H⁺ coupled (15).

As a thermophilic bacterium, strain LBS3 is, under normal conditions, confronted with the problem that the passive permeability of H⁺ and Na⁺ across the cytoplasmic membrane increases with temperature (32). The permeability of membranes to H⁺, both in neutrophilic thermophiles and in mesophiles, is about 10⁻²-10⁻³-fold higher than permeability to Na⁺ ions. To account for the increased membrane permeability to H⁺ at higher temperatures, aerobic thermophiles dramatically increase their respiration-linked H⁺ pumping activity to assure the maintenance of both a viable Δψ and the intracellular pH. The anaerobic thermophile C. fervidus does not possess an effective H⁺ pump system. This organism has solved the problem by using Na⁺ as the only coupling ion in energy transduction (26). As a consequence, C. fervidus cannot control its internal pH and grows only at around pH 7.

Like most, if not all, alkali-philic, anaerobic alkali-philic thermophiles obviously have to control their internal pH. In view of the considerations presented above, the bioenergetics of these organisms becomes an intriguing problem. It is not known if anaerobic thermoalkaliphiles depend on H⁺ or Na⁺ ions, or both, for energy transduction. In anaerobic thermoalkaliphiles, as in aerobic alkali-philic (15), the membrane would have to be highly impermeable to H⁺ for H⁺-linked energy transduction to occur. With Na⁺-linked energy transduction, on the other hand, there is the problem of maintenance of the intracellular pH of these organisms. The following question arises: Is Na⁺ the only viable option as an ion for energy-conserving processes in anaerobic thermoalkaliphiles? Are these organisms predominantly dependent on Na⁺ ions for energy-requiring
processes, such as the uptake of solutes and flagellar action (3, 30). In this report, we demonstrate that the primary mechanism of energy transduction in the anaerobic thermalkalophilic strain LB53 is dependent on sodium cycling.

MATERIALS AND METHODS

Bacterial strains and cell growth. The newly isolated strain LB53 (24) was grown, anaerobically, in the Hungate modification of the NC medium (NH4)2SO4 (1.0 g/liter), NaCl (0.4 g/liter), Na2SO4 (0.1 g/liter), KHPO4 (0.5 g/liter), MgSO4 (0.1 g/liter), CaCl2 (0.05 g/liter), trypsin (0.25 g/liter), yeast extract (0.25 g/liter), FeCl3 (0.01 g/liter), resazurine (0.001 g/liter), trace element solution (Deutsche Sammlung von Mikroorganismen; 10 ml), vitamin solution 141 (Deutsche Sammlung von Mikroorganismen; 10 ml), NaHCO3 (2.0 g/liter), and cysteine (0.5 g/liter). As a carbon source, Bacto peptone (Difco) was added at 2.0% (wt/vol). After distribution into 15-ml Hungate tubes (9 ml of medium per tube) or 100-ml serum bottles (20 or 50 ml per bottle), the medium was sterilized. The vitamin solution was injected from filter-sterilized solutions into autoclaved tubes containing the above-described medium. The carbonates were concentrated 10-fold and sterilized separately. For each 9 ml of medium, 1 ml of the sterile carbonate solution was added aseptically prior to addition of the sample or culture material; the final pH was 9.5. Cells were incubated at 50°C and pH 9.5. Large amounts of cells were grown in a pH-controlled 19-liter bioengineering fermentor. Cells were harvested in the exponential phase of growth at a density of 3 x 108 to 4 x 109 ml-1 and lysed by dilution into 300 ml of 50 mM NaCl (final concentration). Membrane vesicles were loaded with potassium ions and diluted into a buffer containing sodium ions either in the absence or in the presence of the K+ ionophore valinomycin in order to generate a ΔεPn+ or a ΔεPn+ (i.e., ΔV′ = ΔεPn+), respectively. As shown in Fig. 1, rapid uptake of urea occurred in the

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Initial uptake ratea (nmol/min mg of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>l-Arginine</td>
<td>15.5</td>
</tr>
<tr>
<td>l-Phenylalanine</td>
<td>13.5</td>
</tr>
<tr>
<td>l-Threonine</td>
<td>5.2</td>
</tr>
<tr>
<td>l-Alanine</td>
<td>4.5</td>
</tr>
<tr>
<td>l-Lysine</td>
<td>2.6</td>
</tr>
<tr>
<td>l-Asparagine</td>
<td>2.2</td>
</tr>
<tr>
<td>l-Leucine</td>
<td>1.6</td>
</tr>
<tr>
<td>l-Serine</td>
<td>1.2</td>
</tr>
<tr>
<td>l-Glutamine</td>
<td>1.1</td>
</tr>
<tr>
<td>l-Glutamate</td>
<td>0.03</td>
</tr>
</tbody>
</table>

* Membrane vesicles of strain LB53 were loaded with 100 mM potassium phosphate, pH 8.0, and diluted 100-fold into 100 mM sodium or potassium phosphate, pH 8.0, supplemented with the indicated 14C-labelled amino acid. The initial rates of amino acid uptake were determined during the first 7.5 s. The rates of amino acid uptake in the absence of a sodium gradient ranged from 0.01 to 0.05 nmol/min mg of protein.

fluoride, and 0.05% (vol/vol) Triton X-100, NaCl, KCl, or LiCl was present at 50 mM unless otherwise noted. Assays were performed in a 96-well microtiter plate with a well volume of 300 μl. Each well contained 5 μg of membrane protein (in 10 μl) and 10 μl of assay buffer. After a 1-min incubation at 40°C, the reaction was initiated by the addition of 10 μl of Tris-ATP (2 mM final concentration). Reactions were stopped after 10 min by the addition of 200 μl of malachite green solution (6). Color development was terminated after 5 min by the addition of 10 μl of a 34% (wt/vol) citric acid solution. The assay was measured immediately at 620 nm in a multiliter counter. For the determination of pH dependency, membrane vesicles were diluted 40-fold in 100 mM Tricine buffer prepared at various pH values, preincubated for 60 min on ice, and assayed for ATPase activity. The effects of inhibitors on the ATPase activity were measured in assay buffer in the presence of 50 mM NaCl (final concentration). Membrane vesicles were preincubated for 60 min on ice in the presence of N,N'-dicyclohexylcarbodiimide (200 or 50 μM), carbonyl cyanide m-chlorophenylhydrazone (20 or 10 μM), vanadate (200 or 50 μM), or nitrate (25 or 10 mM KNO3). Controls in which no membrane vesicles were used in the assay were included. Calibration was achieved by using a series of P, standards.

Protein determination. Protein was determined according to the method of Lowry et al. (20) with bovine serum albumin as a standard.

Materials. All radioactive chemicals were obtained from the Radiochemical Centre, Amersham, United Kingdom. All other chemicals were of reagent grade and obtained from commercial sources.

RESULTS

Uptake of amino acids by strain LB53 membrane vesicles. From the newly isolated strain LB53, membrane vesicles were isolated by lysozyme treatment and osmotic lysis. To determine whether the membrane vesicles had retained transport activity, the uptake of 14C-labelled amino acids was analyzed in response to an imposed ΔεPn+. In the initial experiments, a ΔεPn+ was chosen because strain LB53 requires a high sodium concentration for growth, i.e., 170 mM (24). Membrane vesicles were loaded with potassium ions and diluted into a buffer (pH 8.0, 40°C) containing sodium or potassium ions to generate a ΔεPn+ or no gradient, respectively. Except for l-glutamate, all tested amino acids were accumulated by the membrane vesicles in a sodium-dependent manner (Table 1). Especially high uptake rates were observed for l-arginine and l-phenylalanine. These data suggest that the uptake of most amino acids by strain LB53 is dependent on Na+ ions.

The uptake of l-arginine was studied in greater detail. Membrane vesicles were loaded with potassium ions and diluted into a buffer containing sodium ions either in the absence or in the presence of the K+ ionophore valinomycin in order to generate a ΔεPn+ or a ΔεPn+ (i.e., ΔV′ = ΔεPn+) respectively. As shown in Fig. 1, rapid uptake of urea occurred in the

protein cometabolism by strain LB53 was dependent on sodium cycling.
presence of both a $\Delta \mu_{\text{Na}^+}$ and a $\Delta \mu_{\text{Na}^+}$. However, uptake was accelerated by the imposition of a $\Delta \Psi$ on top of the chemical gradient of sodium ions. These data demonstrate that L-leucine uptake by strain LBS3 occurs in symport with Na$^+$ ions.

Effect of pH and temperature on L-leucine uptake. Since strain LBS3 is an anaerobic thermoalkaliphile that grows optimally at 50°C and an alkaline pH of 9.5, the pH and temperature dependencies of L-leucine uptake were studied. An imposed $\Delta \Psi$ is usually rapidly dissipated at higher temperatures, while a chemical gradient of Na$^+$ is more stable. Therefore, experiments were performed with a $\Delta \mu_{\text{Na}^+}$ of −120 mV only. The initial L-leucine uptake rate was maximal at pH 8.0 when assayed at 40°C (Fig. 2), although high rates of uptake were observed over a broader range of pH values, i.e., 7.0 to 10.0.

When assayed at pH 8.0, uptake was optimal at 50°C (Fig. 3) but decreased rapidly at higher temperatures. Both the pH range and the temperature range that support uptake of L-leucine correspond to the physiological borders that allow the growth of strain LBS3 (24).

Ion dependency of L-leucine uptake. To establish whether L-leucine uptake is strictly coupled to Na$^+$ ion transport, the influence of other cations was tested. Many Na$^+$-dependent transport systems are able to utilize Li$^+$ ions instead of Na$^+$. As shown in Fig. 4, no uptake was observed when K$^+$-loaded vesicles were diluted into a buffer containing Li$^+$ as the counterion. Even when the Li$^+$ concentration was gradually lowered from 100 to 10 mM, no uptake of leucine was observed (data not shown). It is, therefore, concluded that L-leucine uptake is strictly coupled to Na$^+$ symport. Next, the Na$^+$ de-
performed at pH 8.0 and 40°C. Leucine uptake by membrane vesicles of strain LBS3 was measured upon addition of 2 mM Mg-ATP. The initial rate of uptake was determined in the first 7.5 s.

Internal and external ionic strengths were kept equal, and externally potassium was replaced by sodium. The initial rate of uptake was determined at pH 7.0 and 46°C as described in Materials and Methods. The internal rate of the ATPase was measured at pH 7.0 and 46°C as described in Materials and Methods, and externally the potassium was replaced by sodium. The initial rate of uptake was determined in the first 7.5 s.

Characterization of the ion dependency of the membrane-bound ATPase. The data presented above suggest that the secondary transport of amino acids by strain LBS3 is coupled to Na⁺ transport and thus depends on the sodium motive force. Since strain LBS3 is a strict anaerobe that relies on substrate level phosphorylation for the production of metabolic energy, the generation of a sodium motive force depends on either a proton-translocating ATPase that acts in concert with a Na⁺/H⁺ antiporter or a primary sodium pump, such as a sodium-translocating ATPase. To test the latter possibility, inside-out membrane vesicles were prepared and the ion dependency of the membrane-bound ATPase activity was measured. ATPase activity was measured by following the release of Pi upon addition of Mg-ATP. The rate of autohydrolysis of Tris-ATP in the buffer system used was subtracted from the observed activity. The maximum ATP autohydrolysis rate in the chosen buffer system was lower than 124 nmol of Pi per min per mg of protein. ATPase activity was measured at pH 7.0 and 46°C as described in Materials and Methods, and externally the potassium was replaced by sodium. The maximum ATP autohydrolysis rate in the presence of Triton X-100 was employed at a concentration of 0.05% (vol/vol). Maximum activity was observed when the membranes were solubilized with the detergent Triton X-100. ATPase activity was measured by following the release of Pi upon addition of Mg-ATP. The rate of autohydrolysis of Tris-ATP in the buffer system used was subtracted from the observed activity. The maximum ATP autohydrolysis rate in the chosen buffer system was lower than 124 nmol of Pi per min per mg of protein and varied with the pH.

Effect of inhibitors and activators on ATPase activity. To characterize the type of ATPase, the effects of a number of inhibitors on the Na⁺-stimulated ATPase activity in the absence of Triton X-100 were tested. In the presence of the F-type inhibitor N,N'-dicyclohexylcarbodiimide, moderate inhibition of the ATPase activity was observed (Table 2). On the other hand, the ATPase activity was slightly stimulated by the P-type ATPase inhibitor vanadate, indicating that the enzyme does not belong to this group of ATPases. The V-type inhibitor N,N'-dicyclohexylcarbodiimide had no effect on the ATPase activity. The protonophore carbonyl cyanide m-chlorophenylhydrazone caused a slight stimulation of the ATPase activity, but this effect was not as

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration</th>
<th>Relative rate of ATP hydrolysis (% of control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>NA</td>
<td>100</td>
</tr>
<tr>
<td>Control + Triton X-100</td>
<td>NA</td>
<td>67</td>
</tr>
<tr>
<td>DCCD</td>
<td>200 μM</td>
<td>64</td>
</tr>
<tr>
<td>CCCP</td>
<td>10 μM</td>
<td>123</td>
</tr>
<tr>
<td>Vanadate</td>
<td>20 μM</td>
<td>127</td>
</tr>
<tr>
<td>KNO₃</td>
<td>10 mM</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>25 mM</td>
<td>103</td>
</tr>
</tbody>
</table>

* 100% activity corresponds to the release of 97 nmol of Pi per min per mg of protein. ATPase activity was measured at pH 7.0 and 46°C as described in Materials and Methods.
* NA, not applicable.
* DCCD, N,N'-dicyclohexylcarbodiimide.
* CCCP, carbonyl cyanide m-chlorophenylhydrazone.

Effect of pH on the rate of ATP hydrolysis by inside-out membrane vesicles of strain LBS3. P release was measured upon addition of 2 mM Mg-ATP in the presence of sodium (●), lithium (○), or potassium (△) ions (each at 50 mM) as described in Materials and Methods; 100% activity corresponds to the release of 100 nmol of Pi per min per mg of protein, and 0% activity corresponds to the rate of ATP autohydrolysis measured in this buffer system at the specified pH value.
Strain LBS3 exhibits an ATPase activity associated with inside-out membrane vesicles that is stimulated by both Na\(^+\) and Li\(^+\) ions. Saturation occurred bacteria at only 1 mM Na\(^+\). Na\(^+\)-stimulated ATPases have also been found in the anaerobic bacteria Propionigenium modestum (17), C. fervidus (27), and Enterococcus hirae (31) and in the methanogenic archaeon Methanosarcina mazei Gó1 (1). It seems likely that this ATPase functions as a primary Na\(^+\) pump, although definitive proof lies in the demonstration of this activity. The inhibition spectrum suggests that the ATPase from strain LBS3 is an F-type enzyme, although care should be taken with indirect classification on the basis of inhibitors alone.

Since energy transduction in strain LBS3 appears to be dependent on Na\(^+\) cycling, the following question remains: does this organism maintain its intracellular pH, and if so, what mechanism is used for pH homeostasis? At pH 10 to 11, alkaliphiles usually maintain an intracellular pH that is about 2 pH units lower than the pH of the suspending medium. Since the collapse of pH homeostasis in alkaliphiles is unprecedented to this date (9, 15), we assume that strain LBS3 is not an exception in this respect. In aerobic alkaliphiles, the activity of an Na\(^+\)/H\(^+\) antiporter has been found to play an important role in internal pH regulation (15, 25). Since strain LBS3 primarily relies on an Na\(^+\)-translocating ATPase for the generation of a sodium gradient across the membrane, it is difficult to image how an Na\(^+\)/H\(^+\) antiporter, would contribute to pH homeostasis. The possibility exists that the internal pH is regulated by a K\(^+\)/H\(^+\) antiporter, which allows the influx of H\(^+\) at the expense of the release of K\(^+\). K\(^+\)/H\(^+\) antiporters have been implicated in pH regulation in other bacteria before (22, 29). In addition, the intracellular formation of acids (e.g. acetate, which is produced when the cells are grown on starch (24)) may contribute to pH homeostasis.

Another important factor for energy transduction (32) and growth (33) is the temperature. The permeability of the membrane to H\(^+\) and Na\(^+\) ions increases as the temperature rises, and a recent study on the permeability characteristics of liposomes derived from the membrane lipids of various neutrophilic bacteria suggests that there is a relation between the maximum growth temperature and the permeability of the membrane to H\(^+\) (32). Since Na\(^+\) ions are 10\(^{-2}\) to 10\(^{-3}\)-fold less permeative than H\(^+\), extreme thermophiles may gain an advantage by switching to Na\(^+\)-coupled energy transduction under conditions in which the permeability to H\(^+\) becomes too high. A high permeability of the membrane to H\(^+\) would make it even more difficult for anaerobic neutrophilic bacteria to regulate their intracellular pH. It is therefore not unlikely that the lipid bilayer of these organisms is adapted to cope with the phenomenon. On the other hand, a low permeability of the membrane to H\(^+\) does not alone suffice for pH homeostasis. With both primary and secondary energy transduction being exclusively coupled to Na\(^+\) another mechanism of pH regulation, such as the K\(^+\)/H\(^+\) antiporter, must be operational in these organisms. Acidification of the intracellular pH relative to the pH of the external medium could also directly result from \(\Delta\Psi\)-driven expulsion of OH\(^-\) (or uptake of H\(^+\)) which is phenomenologically similar to expulsion of OH\(^-\) but is less likely to occur because of the infinitely low concentration of H\(^+\) at pH 10. This could be passive or could involve a pH-regulated channel. Obviously, studies are needed to determine if and how these bacteria regulate their intracellular pH, an important aspect of the bioenergetics of anaerobic neutrophilic bacteria.
philes, which rely on H^+-linked energy transduction. Since this is the first report on the bioenergetics of an anaerobic ther-
mal alkaliophile, many questions remain and it will be important to elucidate how these organisms maintain their intracellular pH under alkaline conditions.

ACKNOWLEDGMENTS

This work was supported by the European Community (BIOTECH programme BIO2-CT-930274) and the Fonds der Chemischen Indus-
trie.

For valuable discussion on ATPases we thank Kerstin Hoener zu Bentrup.

REFERENCES

1. Becher, B., and V. Müller. 1994. $\Delta\mu_{\text{H}^+}$-drives the synthesis of ATP via an $\Delta\mu_{\text{H}^+}$-translocating F_1F_0-ATP synthase in membrane vesicles of the ar-

8. Hungate, R. E. 1969. A roll-tube method for the cultivation of strict anaer-

10. Jahn, T. 1996. Ammonium/urea-dependent generation of a proton electro-

thermophilic archaeon growing on polysulphide at alkaline pH. Arch. Micro-

chem. 100:95–97.

30. Sugiyama, S. 1995. Na$^+$-driven flagellar motors as likely Na$^+$ re-entry path-

32. van de Vossenberg, J. L. M. C., T. Ubbink-Kok, M. G. L. Elferink, A. J. M. Driessen, and N. Konings. 1995. Ion permeability of the cytoplasmic mem-