Simple circular dichroic method for the determination of absolute configuration of 5-substituted 2(5H)-furanones
Gawronski, J.K.; van Oeveren, A.; van der Deen, H.; Leung, C.W; Feringa, B.L.

Published in:
Journal of Organic Chemistry

DOI:
10.1021/jo951400l

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1996

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Simple Circular Dichroic Method for the Determination of Absolute Configuration of 5-Substituted (5H)-Furanones

Jack K. Gworski,† Arjan van Oeveren, Hanncke van der Deen, Chiu W. Leung, and Ben L. Feringa

Department of Chemistry, A. Mickiewicz University, 60-780 Poznań, Poland, and Department of Organic and Molecular Inorganic Chemistry, Groningen Centre for Catalysis and Synthesis, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands

Received July 8, 1995

Chiral 2(5H)-furanones (butenolides) have emerged as important synthetic intermediates for which several general synthetic protocols have been devised.1,2 In these compounds (A), the stereogenic center is most frequently located at C(5).

![Diagram of butenolide structure](image)

Hanessian2 extensively used (S)-5-(hydroxymethyl)-2(5H)-furanone (A, R = CH₂OH) derived from (S)-glutamic acid in the synthesis of polypropionates and polyols and applied it in cycloadditions and conjugate addition reactions. Alternative routes to optically active butenolides involve β-ribonolactone, β-mannitol, or levoglucosenone as starting materials.4 Optically active 5-alkyl-substituted butenolides have been explored by several groups.5 A chromium carbene route to optically active 5-alkoxy-5-alkyl-(2(5H))-furanones was recently described by Hegedus and co-workers.6

The chemistry of γ-alkoxybutenolides has been explored in our laboratory.7 Diastereomerically pure butenolides have been prepared with the aid of a chiral auxiliary, (+)- or (−)-menthol (A, R = menthoxly).8 Racemic 5-alkoxy-2(5H)-furanones were kinetically resolved by the addition of thiol catalyzed by cinchona alkaloids.8 Efficient resolution of γ-alkoxybutenolides through inclusion complexation with chiral host compounds derived from tartaric acid has been reported,9 while 5-(acyloxy)-2(5H)-furanones were resolved via lipase-catalyzed transesterification reactions.10

Optically active butenolides can also be prepared by diastereoselective addition of a chiral tin(II) enolate to γ-hydroxybutenolides,11 and γ-C-glycosylated butenolides are available from aldehyde sugars through condensation with 2-(trimethylsilyloxy)furan.12 The 2-(trimethylsilyloxy)furan–butenolide pathway was employed in the synthesis of 6-deoxy-6,6,6-trifluorouracils.13 Optically active butenolides are furthermore available from sugar lactones14 and from chiral propargylic alcohols via ruthenium-catalyzed Alder ene reactions.15

γ-Alkyl- and γ-alkoxybutenolide structures are frequently found in several biologically active compounds, e.g., strigol16 and marine natural products.17,18 In addition, chiral 5-methyl-substituted 2(5H)-furanone rings are structural components of numerous natural products, examples of which are acetogenins,19 muconolactones,20 and leptosphaerins.21 Compounds of these classes are frequently unsuitable for X-ray crystallographic studies due to their waxy nature; hence, in such instances the absolute configuration of the butenolide fragment may not be known.

The need for a rapid and universal method for the determination of the absolute configuration of synthetic butenolides is obvious because of their frequent use as intermediates in asymmetric synthesis.22 So far, chemical correlations have been necessary to determine the absolute configuration.23

Despite the importance of chiral butenolides in synthesis and in natural products chemistry the chiroptical data for these compounds are scarce24 and their relation to the structure has been discussed mainly in the case

1. A. Mickiewicz University.
of bi- and polycyclic 2(5H)-furanones.25 Beecham discussed the effect of ring nonplanarity in polycyclic butenolides on the \(n-\pi^*\) transition rotatory strength.25a and Richardson examined this effect by the INDO-MO calculations.25b Uchida and Kuriyama studied the \(\pi-\pi^*\) Cotton effect of mono- and polycyclic \(\beta,\gamma\)-unsaturated \(\gamma\)-lactones and found that the sign of the Cotton effect correlates with the configuration of the more polarizable bond at \(\gamma\) carbon atom.25c Our analysis of the CD data of 5-substituted 2(5H)-furanones takes advantage of the well-established planarity of the butenolide ring.2,26 The \(\beta,\gamma\)-unsaturated lactone chromophore in the butenolide ring is achiral, and it becomes optically active in the presence of a perturber at the stereogenic center at C(5). The observed Cotton effects due to the \(n-\pi^*\) and \(\pi-\pi^*\) transitions of the \(\beta,\gamma\)-unsaturated lactone chromophore may be correlated directly to the absolute configuration of the stereogenic center. This approach has been successfully applied to planar 2-cyclopentenones bearing an oxygen substituent at C(4).27

Here we report the results of our CD studies of a series of 5-alkyl- and 5-alkoxy-substituted butenolides 1–18 (Chart 1).

The 5-(menthylxylo)- (7–9, 17, and 18),2 5-methoxy- (6), and 5-isopropoxybutenolides (16)9 were prepared as previously described. Optically active 5-acetoxy-2(5H)-furanone (15)10 was obtained in 31% yield via enzymatic kinetic resolution of racemic 15. When lipase PS immobilized on Hyflo Super Cell in n-hexane:n-butanol (3:1) was used, a transesterification occurred and the starting material recovered after 4 h was enantiomerically pure (ee > 99% as determined by chiral GC). The absolute configurations of all the butenolides except for 15 and 16 are known from chemical correlation and the absolute configuration of 5-(hydroxymethyl)-2(5H)-furanone and d- or l-menthol. The CD data of all butenolides are given in Table 1.

From the data of Table 1 it can be readily seen that absolute configuration at C(5) is correlated to the sign of the Cotton effects of the \(n-\pi^*\) (235–250 nm) and \(\pi-\pi^*\) (200–220 nm) transitions according to Figure 1. Thus, right-handed (P) helicity of the R-\(\alpha\)-C(5)-C bond

\[\begin{align*}
1: R_1 &= (CH_2)OH, \quad R_2 = R_3 = H \\
2: R_1 &= CH_2COOH, \quad R_2 = R_3 = H \\
3: R_1 &= CH_2COOME, \quad R_2 = R_3 = H \\
4: R_1 &= (R)-CH(OH)CF_3, \quad R_2 = R_3 = H \\
5: R_1 &= (S)-CH(OH)Me_2BuCF_3, \quad R_2 = R_3 = H \\
6: R_1 &= OMe, \quad R_2 = R_3 = H \\
7: R_1 &= O-(+)-menthyl, \quad R_2 = R_3 = H \\
8: R_1 &= O-(+)menthyl, \quad R_2 = Me, \quad R_3 = H \\
9: R_1 &= O-(+)menthyl, \quad R_2 = H, \quad R_3 = Me \\
10: R_1 &= CH_2OH, \quad R_2 = R_3 = H \\
11: R_1 &= CH_2OSiMe_2Bu, \quad R_2 = R_3 = H \\
12: R_1 &= CH_2OC(O)Bu, \quad R_2 = Me, \quad R_3 = H \\
13: R_1 &= (R)-CH_2OCMe_2NBoc, \quad R_2 = R_3 = H \\
14: R_1 &= (R)-CH(OH)CF_3, \quad R_2 = R_3 = H \\
15: R_1 &= OAc, \quad R_2 = R_3 = H \\
16: R_1 &= OPr, \quad R_2 = R_3 = H \\
17: R_1 &= O-(+)menthyl, \quad R_2 = R_3 = H \\
18: R_1 &= O-(+)menthyl, \quad R_2 = H, \quad R_3 = Me
\end{align*} \]

Figure 1. Correlation of the butenolide Cotton effects with absolute configuration.

\[\begin{align*}
\text{n-}\pi^* (235-250 \text{ nm}) & \quad \Delta\alpha < 0 \\
\text{\pi-}\pi^* (200-220 \text{ nm}) & \quad \Delta\alpha > 0
\end{align*} \]
The configurational rule can be particularly useful for determining the absolute configuration of the butenolide moiety in acetogenins, previously possible only through synthesis. Thus, acetogenins bearing the 5-methyl-2(5H)-furanone group of (S)-configuration (B) as the sole chromophore display a negative \(n-\pi^* \) Cotton effect at 235–240 nm and a positive \(\pi-\pi^* \) Cotton effect at 205–210 nm.

The configurational rule also seems to be applicable to 2(5H)-furanones having an allylic hydroxy group in a ring fused to the butenolide ring. The two diastereoisomeric lactatorufins \(\text{LRA (19)} \) and \(\text{epi-LRA (20)} \) display Cotton effects of opposite signs, and in each case the signs of the \(n-\pi^* \) and \(\pi-\pi^* \) transition Cotton effects follow the helicity rule for the HO-C-C=O bond system.

Experimental Section

UV and CD spectra were recorded with a Shimadzu 160 spectrophotometer and a Jobin-Yvon III dichrograph, respectively, in methanol solutions (10^{-3} M).

Butenolides \(\text{6, 16, 17–19, and 18b} \) were prepared according to reported procedures.

Butenolide from \(\text{R,S)-5-Acetoxy-2(5H)-furanone (R,S)-15} \)

To a mixture of 5-hydroxy-2(5H)-furanone (22.8 g, 227 mmol) and acetic anhydride (24.75 g, 242 mmol) was added a catalytic amount of p-toluenesulfonic acid. The solution was heated to 50 °C for 2.5 h. The product was distilled to provide 28.99 g (68%) of \(\text{(R,S)-15} \) as a pale yellow oil: bp 102–104 °C (0.05 mmHg); \(\text{H} \) NMR (CDCl\textsubscript{3}, 200 MHz) \(\delta \) 7.32 (dd, 1H, \(J = 5.6, 1.3 \) Hz), 6.95 (d, 1H, \(J = 1.2 \) Hz), 6.30 (dd, 1H, \(J = 5.6, 1.3 \) Hz), 2.13 (s, 3H); \(\text{UV} \) NMR (50 MHz) \(\delta \) 168.90, 169.50, 149.80, 125.09, 93.76, 20.56.

Transesferification of \(\text{(R,S)-5-Acetoxy-2(5H)-furanone} \)

To a solution of racemic \(\text{15 (8.00 g, 56.3 mmol)} \) in 1.5 L of a mixture of n-hexanen-butanol (3:1) was added 3.0 g (30 m/m %) of lipase PS immobilized on Hyfloy Super Cell. The solution was vigorously stirred at room temperature, and the progress of the reaction and the enantiomeric excess were monitored by chiral GC (capillary column coated with CP cycloextrin-b-2,3,6,8,19). After 4 h, an ee > 99% was found and the stirring was stopped. After precipitation of the solid material (10 min) the solution was decanted from the enzyme slurry and filtered through Celite. The solvents were removed by distillation under vacuum at room temperature, and the remaining yellow oil was purified by chromatography (silica gel, hexane:EtOAc 3:1). Pure \(\text{15} \) was obtained as an oil (2.55 g, 31.8%: \(\alpha \)-value = +25.4 (c 1.00, CHCl\textsubscript{3}).

Acknowledgment

We gratefully acknowledge the following groups that provided us with the samples for CD study: Prof. Sutherland (1–3), Prof. T. Yamazaki (4, 5, 14), Prof. J. Font (12), Prof. P. Garner (13), and Prof. Daniewski (19, 20). J.K.G. thanks the Committee for Scientific Research (KBN) for partial support. This work was sponsored in part (A.v.O., H.v/d M.; Smith, D.L.; Chang, C.J.; McLaughlin, J.L.) by the Netherlands Foundation for Scientific Research (NWO/SON) and (C.W.L.) by the EC project Stereoselective Organic Synthesis (Human Capital and Mobility Network).

Table 1. CD and UV Data for Chiral 2(5H)-Furanones

<table>
<thead>
<tr>
<th>compd</th>
<th>(n-\pi^*)</th>
<th>(\pi-\pi^*)</th>
<th>(\pi-\pi^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.2 (239)</td>
<td>+2.1 (203)</td>
<td>6300 (207)</td>
</tr>
<tr>
<td>2</td>
<td>-0.8 (239)</td>
<td>+5.9 (202)</td>
<td>6800 (205)</td>
</tr>
<tr>
<td>3</td>
<td>-0.7 (239)</td>
<td>+3.0 (202)</td>
<td>8700 (205)</td>
</tr>
<tr>
<td>4</td>
<td>-0.3 (242)</td>
<td>+2.6 (205)</td>
<td>7200 (204)</td>
</tr>
<tr>
<td>5</td>
<td>-0.5 (242)</td>
<td>+1.0 (206)</td>
<td>7900 (204)</td>
</tr>
<tr>
<td>6</td>
<td>-2.2 (242)</td>
<td>+1.9 (203)</td>
<td>6500 (201)</td>
</tr>
<tr>
<td>7</td>
<td>-1.9 (248)</td>
<td>+5.6 (201)</td>
<td>6300 (201)</td>
</tr>
<tr>
<td>8</td>
<td>-3.7 (242)</td>
<td>+7.5 (214)</td>
<td>9500 (207)</td>
</tr>
<tr>
<td>9</td>
<td>-2.4 (245)</td>
<td>+4.7 (212)</td>
<td>7400 (203)</td>
</tr>
<tr>
<td>10</td>
<td>-13.0 (207)</td>
<td>+7.8 (206)</td>
<td>7100 (206)</td>
</tr>
<tr>
<td>11</td>
<td>-13.0 (207)</td>
<td>+11.600 (208)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-0.6 (236)</td>
<td>+10.0 (207)</td>
<td>11600 (208)</td>
</tr>
<tr>
<td>13</td>
<td>-5.8 (220)</td>
<td>+11.600 (208)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>+0.2 (243)</td>
<td>-8.0 (205)</td>
<td>7600 (204)</td>
</tr>
<tr>
<td>15</td>
<td>+2.3 (250)</td>
<td>-13.6 (198)</td>
<td>6900 (201)</td>
</tr>
<tr>
<td>16</td>
<td>+0.75 (248)</td>
<td>-2.6 (201)</td>
<td>6400 (201)</td>
</tr>
<tr>
<td>17</td>
<td>+1.9 (249)</td>
<td>-5.7 (201)</td>
<td>6300 (201)</td>
</tr>
<tr>
<td>18</td>
<td>+2.7 (247)</td>
<td>-6.0 (212)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>+1.8 (241)</td>
<td>-3.4 (218)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-0.3 (250)</td>
<td>+6.0 (222)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\alpha)-value</th>
<th>(\alpha)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>+25.4 (c 1.00, CHCl\textsubscript{3})</td>
<td>+25.4 (c 1.00, CHCl\textsubscript{3})</td>
</tr>
</tbody>
</table>

Notes

